Корреляция и непараметрические критерии различия в педагогических исследованиях

Теория образования » Корреляция и непараметрические критерии различия в педагогических исследованиях

Страница 6

Коэффициент корреляции признается статистически значимым с вероятностью ошибки <0,05, если r > r 05, и с вероятностью ошибки <0,01, если r > r01.

Табличные значения даны для двух уровней значимости: Р = 0,05 и Р = 0,01. Полученный коэффициент корреляции может считаться достоверным лишь в том случае, если его числовое значение превышает табличное значение хотя бы при уровне значимости Р = 0,05 для данного числа парных факторов. В приведенном примере для 10 парных факторов табличные значения составляют: Р05 + = 0,623, Р01 = 0,765. Высчитанный коэффициент равен 0,837, т.е. он больше табличного значения при Р = 0,01.

Если парных факторов больше 100, оценку достоверности коэффициента целесообразно рассчитывать по формуле средней ошибки коэффициента корреляции (mr):

Принято считать, что достоверным коэффициент корреляции может быть признан только тогда, когда он превышает свою ошибку в 3 и более раза. В некоторых случаях формула может быть использована для оценки достоверности и при небольшом числе парных факторов, В данном примере:

Полученный коэффициент корреляции превышает свою ошибку более чем в 8 раз.

Сделать методический вывод. Выявлена отрицательная корреляция: наиболее высоким показателям физической работоспособности соответствуют наименьшие показатели времени прохождения дистанции. Значит, чем более высоким уровнем физической работоспособности обладает спортсмен, тем лучше время (при прочих равных условиях) он может показать на дистанции.

Если на одном и том же материале высчитаны коэффициенты корреляции ρ и r, то необходимо провести сопоставление их значений по методу моментов Пирсона. Делается это следующим образом: определяется разница между абсолютными значениями двух коэффициентов без учета их знака.

0,837 - 0,807 = 0,030.

По В.Ю. Урбаху (1964) считается, что полученная разница не должна превышать 3%. В приведенном примере она составляет 0,025%, а поэтому находится в пределах нормы.

Коэффициент регрессии позволяет установить количественную меру изменения следственного фактора при изменении причинного фактора на одну единицу. В отличие от показателей корреляции - величин относительных, измеряющих тесноту связи между признаками в долях единицы, показатели регрессии - величины абсолютные: они характеризуют зависимость между переменными факторами по их абсолютным значениям .

Применительно к приведенному примеру вопрос в задаче на вычисление может быть сформулирован следующим образом: насколько в среднем улучшится спортивный результат в лыжной гонке при увеличении уровня физической работоспособности спортсменов на 1 кГм/мин/кг?

Чтобы получить ответ на поставленный вопрос, необходимо:

высчитать коэффициент корреляции r; оказалось, что он равен 0,837;

определить средние квадратические отклонения для каждого сравниваемого ряда; например, для ФР170 sA оказалась равной 2,75, а для результатов в лыжной гонке sБ - 6,14;

полученные значения подставить в формулу коэффициента регрессии RАБ:

кГм/мин/кг/мин;

сделать методический вывод: с увеличением уровня физической работоспособности на 1 кГм/мин/кг спортивный результат улучшался в среднем на 0,286 мин.

Страницы: 1 2 3 4 5 6 7 8 9 10 11

Статьи по теме:

Семейные традиции
Традиция переводится как исторически сложившиеся и передаваемые из поколения в поколение формы деятельности и поведения, и соответствующие им обычаи, правила, ценности. Именно традиции выступают фактором регуляции жизнедеятельности людей, это основа воспитания детей. Воспитание ребёнка начинается с ...

Функции и требования к системе оценивания знаний. Виды оценок
Функции системы оценивания. Прежде всего, попытаемся определить те функции, которые выполняет сегодня система оценивания. Их можно выделить три. · Нормативная функция включает в себя, с одной стороны, фиксирование достижений конкретного учащегося относительно утвержденного государством эталона с те ...

Программа по формированию мотивации учения
«Познай себя и сделай первый шаг» Я знаю, как на мёд садятся мухи, Я знаю смерть, что рыщет, всё губя, Я знаю книги, истины и слухи, Я знаю всё, но только не себя. Франсуа Вийон Формирование мотивации учения в школьном возрасте без преувеличения можно назвать одной из центральных проблем современно ...

Категории